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Abstract

Arti®cial neural network (ANN) models have been developed to predict the release of volatile ®ssion products from

both Canada deuterium uranium (CANDU) and light water reactor (LWR) fuel under severe accident conditions. The

CANDU model was based on data for the release of 134Cs measured during three annealing experiments (Hot Cell

Experiments 1 and 2, or HCE-1, HCE-2 and metallurgical cell experiment 1, or MCE-1) at Chalk River Laboratories.

These experiments were comprised of a total of 30 separate tests. The ANN established a correlation among 14 separate

input variables and predicted the cumulative fractional release for a set of 386 data points drawn from 29 tests to a

normalized error, En, of 0.104 and an average absolute error, Eabs, of 0.064. Predictions for a blind validation set (test

HCE2-CM6) had an En of 0.064 and an Eabs of 0.054. From this 14 variable ANN model, a pruned version utilizing

only the 6 most signi®cant variables was trained to provide comparable predictions. An ANN model was also developed

for LWR fuel, based on data from the vertical induction (VI) series of tests (VI-2 to VI-5) conducted at Oak Ridge

National Laboratory. Predictions for data not used in ANN training had an En of 0.045 and an Eabs of 0.059. A

methodology is presented for deploying the ANN models by providing the algorithms for trained ANNs and the

corresponding connection weights. Finally, the performance of the full ANN CANDU model was compared to a fuel

oxidation model developed by Lewis et al. and to the US Nuclear Regulatory Commission's CORSOR-M. Ó 1999

Elsevier Science B.V. All rights reserved.

1. Introduction

The need to de®ne nuclear power reactor source terms

for ®ssion products released during severe accident con-

ditions has been underscored by the accidents at Three

Mile Island and Chernobyl. In the United States, tests

have been conducted involving the heating, or annealing,

of fuel fragments and short segments of light water re-

actor (LWR) fuel rods under varying environmental

conditions, such as steam and hydrogen [1]. Analysis of

early annealing experiments performed at the Oak Ridge

National Laboratory (ORNL) has provided a correlation

of the cumulative release of volatile ®ssion products with

temperature and time in a steam environment. This

correlation, called CORSOR-M, is used by the United

States Nuclear Regulatory Commission for LWR source

term prediction [2]. Its applicability to CANDU pres-

surized heavy water reactor (PHWR) fuel has yet to be

established. Further, it only considers two variables

(temperature and time) in one environment (steam).

Corresponding annealing experiments have been

conducted at the Chalk River Nuclear Laboratories

(CRL) on bare fuel fragments and mini-elements (i.e.,

short-length fuel specimens with Zircaloy cladding) de-

rived from spent CANDU fuel. In fact, the Hot Cell

Experiments 1 and 2 (HCE-1 and HCE-2) [3,4] and the

Metallurgical Cell Experiment (MCE-1) [5] include a

total of 30 separate tests conducted using a wide variety

of sample sizes and geometries, thermal conditions and

environments, as shown in Table 1. The resulting large
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data base has yet to be analyzed to the point that an

overall comprehensive model could predict experimental

results with any degree of con®dence.

The physical mechanisms involved in the release of

volatile ®ssion products under severe accident condi-

tions are felt to be extremely complex. In the US, the

FASTGRASS code has been developed to model such

phenomena as ®ssion gas bubble nucleation, migration,

interlinking and resolution [6], while in Canada,

SOURCE-2 is a mechanistic model for CANDU fuel [7].

Both of these codes, however, are computationally in-

tensive and thus do not run in real time. As a result,

work continues on simpler, semi-empirical models which

are based on the controlling physical phenomena. Ex-

amples of this are work by Osborne and Lorenz at

ORNL [8] and more recently by Lewis et al. in Canada

[9]. This notwithstanding, the comprehensive model of

®ssion product release considering the full spectrum of

conditions of the annealing tests and able to run in real

time has not appeared yet. This paper will outline a

novel approach to empirically modelling the results of 30

CRL tests in one instance and 4 ORNL tests in another

with the use of arti®cial neural networks (ANNs) in

order to predict the cumulative ®ssion product release of

volatile ®ssion products (speci®cally 134Cs).

2. Arti®cial neural networks

Neural network development began in the mid 1940s,

but went into a hiatus due to a lack of discernible ap-

plications and su�ciently powerful computers. The most

widely-used paradigm, back propagation, emerged in

the mid 1980s from the work of two psychologists,

McClelland and Rumelhart, in their e�orts to model the

functioning of the brain [10]. Neural networks are

composed of simple nodes (neurons) which take inputs,

sum them, perform a simple mathematical operation on

this sum via a transfer function and pass the result on to

other nodes. Before the output arrives at a subsequent

node, however, a separate numerical value or weight is

applied to it. As a consequence, nodes receive outputs of

preceding nodes which have been modi®ed by these

weights.

Current practice in back propagation networks is to

use three layers of neurons, with interconnections as

shown in Fig. 1. (Recent usage also exhibits some degree

of connection directly between the input and output

nodes, in addition to the connections indicated in

Fig. 1.) These layers are usually named input (X), hid-

den (Y) and output (Z). The input layer contains the

values of the variables and parameters considered for

correlation. In this application, each node would cor-

respond to a value from the list in Table 2 or Table 3.

These inputs are mapped into the range ÿ1.0 to +1.0

using the mapping function

xi � 2vi ÿ �Mi � mi�
�Mi ÿ mi� ; �1�

where xi is the scaled or mapped ith input value, cor-

responding to vi, the unscaled or raw input value. Mi

and mi are the maximum and minimum values of vi,

respectively. Each input node is connected to each node

in the hidden layer. It is also usual to connect a bias

node (with a set value of 1.0) to all hidden and output

nodes. The bias node serves to o�set the origin of the

transfer function and tends to cause the network to

converge more quickly.

Each connection to a hidden layer node contains the

normalized input value leaving the input layer or bias

node, modi®ed by a connection weight. Thus, the ith

scaled input value, xi, connected to the jth hidden node

has a weight, wji, applied to it. Consequently, the hidden

node receives as an input from the ith node, the value

wjixi. Each node in the hidden and output layers, then,

receives and sums the inputs to it. In Fig. 2, Ij is the sum

of i inputs, each multiplied by its own connection

weight, so that

Ij �
Xn

i�0

wjixi: �2�

When optimized, this is the equation of a linear regres-

sion, with the intercept being the weight associated with

the bias node, wj0.

Non-linearity is introduced into the model by the

transfer function, which is applied to the summed in-

puts, Ij. Several di�erent functions are available (sinu-

soidal, sigmoidal), but the one most widely used is the

hyperbolic tangent, which is a smoothed version of the

step function from ÿ1 to +1. The application of the tanh

Fig. 1. Architecture of a back propagation arti®cial neural

network. Input variables are listed in Table 2 and connection

weights provided in Table 9 for CRL model and in Tables 3

and 10, respectively, for ORNL model.

76 W.S. Andrews et al. / Journal of Nuclear Materials 270 (1999) 74±86



transfer function yields an output, yj, from the jth hid-

den node, such that

yi � eIj ÿ eÿIj

eIj � eÿIj
� tanh Ij: �3�

This same process is repeated between the hidden

layer and the output layer, with the transfer function

again applied to the summed inputs to produce the

output. Thus

Ik �
X

j

wkjyj; �4�

where Ik is the sum of the weighted inputs to the kth

output node and wkj is the connecting weight between

the kth output node and the jth hidden node (or the bias

node).The scaled output from the kth output node is

given by

z � tanh Ik : �5�
This output value z must then be mapped back to pro-

vide a real value for the cumulative fractional release f.

This process is similar to, but the reverse of, the input

mapping. Thus

f � �M ÿ m�z� �Rmÿ rM�
Rÿ r

; �6�

where M and m are the measured maximum and mini-

mum values of the output variable f, and R, r are the

maximum and minimum values of the network output z

(here 0.8 and ÿ0.8 respectively).

When the network is initialized, the values of the

weights are randomly assigned. The `knowledge' or

Table 3

Variables and parameters used in input space for developing ANN for LWR fuel, including maximum and minimum values

Node number (i) Variable (vi) Minimum value (mi) Maximum value (Mi)

0 Bias (value ®xed at 1)

1 Time above 1000°C (s) ÿ1871 10490

2 Fuel temperature (K) 450 2754

3 Rate of temperature change (°C/s) ÿ1.79 1.64

4 Rate of steam ¯ow (L/min) 0 1.6

5 Rate of Ar/H2 ¯ow (L/min) 0 0.4

Fig. 2. Architecture of the jth neuron in the hidden layer.

Table 2

Variables and parameters used in input space for developing ANN for CANDU fuel, including maximum and minimum values. Nodes

are depicted in Fig. 1

Node number (i) Variable (vi) Minimum value (mi) Maximum value (Mi)

0 Bias (value ®xed at 1)

1 Time above 1000°C (s) ÿ3320 22507

2 Fuel temperature (°C) 435 2090

3 Time at temperature (s) 0 22195

4 Time in steam (s) 0 10892

5 Time in air (s) 0 11490

6 Rate of temperature change (°C/s) ÿ0.2 0.5

7 Weight of Zircaloy (g) 0 8.9

8 Cladding closed (y or n) 0 1

9 Rate of steam ¯ow (mL/min) 0 200

10 Rate of air ¯ow (mL/min) 0 400

11 Rate of Ar/H2 ¯ow (mL/min) 0 800

12 Peak linear power (kW/m) 43 58

13 Burnup (MWh/kgU) 257 570

14 Weight of fuel (g) 0.191 45.761

W.S. Andrews et al. / Journal of Nuclear Materials 270 (1999) 74±86 77



`arti®cial intelligence' within the network, however, re-

sides in the distribution of these weights, which must be

adjusted to be able to produce an output as close as

possible to the desired output. This process of adjusting

the weights is called supervised learning and is con-

ducted during the training phase of the network devel-

opment.

To e�ect training, the network is not only presented

with a full array of inputs, but also with known (mea-

sured) outputs for each input set. When the initial pass

through the network for a given set of data is complete,

an output, z, is determined. This value is then compared

to the desired output value, d (the scaled measured value

of the cumulative fractional release), to arrive at a global

error E

E � 0:5�d ÿ z�2: �7�
The global error is then propagated backwards through

the network and used, in conjunction with the appro-

priate learning rule (such as gradient descent) to adjust

the individual connecting weights. This back and forth

iterative process is continued until the global error is

minimized. At this point, another set of input data

(vector) is introduced into the network and the process is

repeated. Generally, the connecting weights are adjusted

after an `epoch' of up to about 500 di�erent inputs (this

can be adjusted to facilitate learning, but updates are

rarely done after each input set, in order to prevent os-

cillations in weight values). A description and derivation

of the application of gradient descent to back propa-

gation for error minimization is contained in abridged

form in Ref. [11] and more fully in Appendix A to this

paper.

Once training is complete, the network is tested

against data which had not been seen during training.

Like the training set, the test set should represent, to the

greatest extent possible, the whole range of the input

space. Also, like the training set, the test set must have

known output values available for comparison with the

network predicted values. Finally, the network should

be validated by predicting results for a data set repre-

sentative of a likely application.

Essentially, then, a trained neural network is an n-

dimensional correlation, and provides a result similar to

a non-linear regression. The link with the physical phe-

nomena it is modelling is through the choice of variables

or parameters. Any relationship among these inputs is

established by the learning rule itself, and not by any

real or postulated physical relationships.

Neural networks have a number of advantages over

other types of models or correlations:

1. With the `knowledge' or `intelligence' distributed

throughout the network, a reasonable response is

possible when the input space contains incomplete,

noisy or previously unseen values, as well as variables

which are not linearly independent.

2. A careful analysis of the weights throughout the net-

work permits the various parameters or variables in

the input space to be ranked in order of in¯uence

on the output.

3. A trained neural network model operates in real time,

making it suitable for being embedded in much more

complex computer codes, such as modelling the pro-

gression of a severe reactor accident.

3. Experimental

The data base used to construct the CANDU model

comprised 9 tests of HCE-1, 13 of HCE-2 and 8 of

MCE-1, with the tests conducted between 1350 and

2100°C and in steam, air or argon/2% hydrogen atmo-

spheres. Each annealing test involved placing a fragment

or mini-element in an induction furnace, and introduc-

ing the appropriate environment (steam, air or argon/2%

hydrogen) into the furnace. The release of ®ssion prod-

ucts from the sample was determined by measuring the

change in ®ssion product activity by using gamma-ray

spectrometry. As well as environment, other factors

varied included temperature, time at temperature,

heating ramp rate, sample size, amount of Zircaloy

cladding and sample burnup. The ®ssion products

measured included 134Cs and 137Cs, 103Ru and 131I, al-

though the model reported on in this paper was devel-

oped for 134Cs, as the cumulative release values showed

minimal randomness and the cesium behaviour was felt

to be representative of volatile ®ssion products in gen-

eral.

Factors such as temperature and the partial pressure

of oxygen in the release environment in¯uence the oxi-

dation rate of uranium and Zircaloy (if present) and, by

extension, the release rates of ®ssion products escaping

as vapors. It is anticipated that the corresponding rates

of release of intragranular volatile ®ssion products from

the fuel matrix should be roughly equal. When investi-

gating irradiated fuel that has been out of a reactor for

upwards to two years, the longer-lived cesium isotopes

remain the best representatives of volatile ®ssion prod-

ucts, which can be considered as being composed of

isotopes of Xe, Kr, I, Te, Rb and Cs [12±14]. For in-

stance, cumulative release fractions of 137Cs and 85Kr

were similar in the HI and VI series of tests at the ORNL

[8]. Moreover, in high temperature annealing tests at the

Commissariat �a l'Energie Atomique, in which spent fuel

samples were reirradiated to restore the short-lived in-

ventory, the measured release kinetics for I, Cs, Xe and

Te were similar in a steam test after the Zircaloy clad-

ding had been completely oxidized; in a hydrogen at-

mosphere, the measured kinetics of I, Cs and Ba were

also comparable [15]. Consequently, the release kinetics

exhibited by 134Cs in a variety of environments and test

conditions using discharged high burnup fuel are felt to
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be representative of the release kinetics of the noble

gases and other volatile products, since these species all

have similar solid state di�usivities and exhibit a high

partial pressure under most reducing and oxidizing

conditions [16].

The VI tests at ORNL used to develop the LWR

model involved the annealing of 15 cm sections of high

burnup LWR fuel to temperatures of up to 2467°C in

either a hydrogen or steam environment. The fuel sec-

tions were cut from full length rods and had press-®t

Zircaloy end caps applied. Release data for the relatively

volatile cesium isotopes (134Cs and 137Cs) were collected

using gamma-ray spectroscopy. A more detailed de-

scription of the experimental procedures can be found in

Ref. [17], as well as Refs. [4] for CRL and [1] and [8] for

ORNL experiments.

4. Analysis

The neural net used to model the CRL tests was

developed using a commercial software shell, Neural-

Works Professional II/Plus by NeuralWare [11] and

featured 14 di�erent inputs, as listed in Table 2. Related

to Fig. 1, the input space would extend from x1 to x14. A

single hidden layer was used with di�ering numbers of

nodes (from 2 to 15). All the architectures returned

comparable results, except the networks with only 2

hidden nodes, which provided poor correlations. The

output layer contained a single node and represented the

cumulative fractional release of 134Cs.

Much of the e�ort needed to train a neural network

must be invested in creating the data base to provide the

input vectors. Each test contained values for tempera-

ture and cumulative fractional release measured at in-

tervals of 100 to 300 s. Most tests exhibited a

characteristic response of: (i) an initial plateau on the

time/fractional release curve (Fig. 3) displaying an initial

low release rate, normally due to a release of the grain

boundary inventory, with some di�usion within the

grains (during the initial temperature ramp); (ii) a fairly

steep climb due to an increased release rate as a conse-

quence of di�usive release particularly during fuel oxi-

dation; and (iii) a ®nal plateau, indicating some possible

trapping in the fuel porosity with a complete release of

the available ®ssion product inventory [9]. As a conse-

quence, cumulative fractional release values (the target

output) are over-represented in the plateau areas in the

original test data with respect to the individual frac-

tional release values associated with the high release rate

portion, e.g., some 16 points correspond to a cumulative

fractional release of 0.2 and 13 between 0.7 and 0.8,

while only 4 lie between 0.4 and 0.5. A model trained on

the raw data could provide good overall predictions by

concentrating on the initial and ®nal values, leaving

predictions for releases during the high release rate

phase of questionable validity. Further, more tests were

conducted at 1600°C than at any other temperature,

although the isothermal test temperatures ranged from

1350 to 2100°C. In order for the model to be able to

interpolate with any degree of con®dence, the input

space had to be as balanced as possible. Without this,

inadvertent biases would be introduced and trained into

the network. In other words, the network would tend to

provide better predictions for conditions approximating

the preponderance of training data and provide poorer

predictions for other areas in the input space. To redress

this imbalance, the data available for each test were

expanded signi®cantly by interpolation, so that the

available number of training vectors was increased from

1371 to 4049. Any inaccuracies introduced by this ap-

proach were felt to be well within the actual noise of the

data itself. For example, in Fig. 3, the number of cu-

mulative fractional release values between 0.3 and 0.7

was expanded by linear interpolation to provide a more

balanced distribution of target (cumulative fractional

release) values over the range of the dependent variable.

Such an expansion would leave values well within the

uncertainty associated with the spectroscopy measure-

ments, as can be seen by inspection of Fig. 3.

The expanded data base was separated into two

portions, with 90% of the data provided for the training

set and the remaining 10% for the test set. In order to

achieve balance, data from some tests were repeated, so

that the total input space contained 12,516 vectors.

Further, the results from a complete test, HCE2-CM6,

were withheld from both the above sets to provide a

Fig. 3. Typical data distribution of the cumulative fractional

release of 134Cs for a CRL annealing test with Zircaloy cladding

(HCE2-CM2). Test conditions are described in Table 1. The

initial temperature ramp was performed in an Ar/2%H2 envi-

ronment.
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validation by exposing the trained network to conditions

on which it had not been trained.

ANN training used the extended delta-bar-delta, or

edbd, learning rule, which is an enhancement of the

basic gradient descent rule [11,17]. Several model de-

velopment parameters were available for optimization:

number of hidden nodes and hidden layers, epoch size

(number of training vectors introduced between succes-

sive connection weight adjustments), number of training

cycles and the initial weight distribution prior to train-

ing. Overall, model development was found to be rela-

tively robust, with only slight di�erences in e�ectiveness

being realized by varying these parameters. For the full

CANDU model, 4±5 hidden nodes in a single layer, an

epoch size of 125 vectors and 7 complete training cycles

(total of 87612 training vectors) provided optimal pre-

dictions.

Model e�ectiveness was gauged in three ways:

1. Network predicted cumulative fractional releases

(outputs) were plotted against the corresponding val-

ues actually determined by CRL. A perfect correla-

tion would have all points fall along the diagonal

with a slope of 1 and an intercept of 0. The corre-

sponding values from the linear regression through

the data were then computed, including the slope

and the correlation coe�cient, r, which is the covari-

ance divided by the product of the sample standard

deviations [18].

2. The normalized error, En, is the ratio of the average

sum-squared error to the average of the squared devi-

ations. This value is felt to be particularly useful for

back propagation, as networks learn the average or

smoothed target values. The normalized error, then,

can be considered as re¯ecting the proportion of the

output variance that is due to error, rather than the

network architecture itself.

3. The average absolute error, Eabs, is the average di�er-

ence (in absolute terms) between the measured and

predicted values for a test or validation set.

As noted already, networks of di�ering numbers of

hidden nodes had comparable r values for the test set.

An example of the scatter plot for a network having 5

hidden nodes in one hidden layer can be seen in Fig. 4.

The solid dots show a perfect correlation, which can be

compared with the actual linear regression through the

points. Most of the 386 test vectors provide points very

close or on the regression line. Overall, the slope of 0.899

and intercept of 0.080 are fairly close to the optimal

values of 1 and 0, respectively. The r value of 0.946

shows the extremely strong correlation between the ac-

tual measured cumulative fractional release values from

29 separate tests and the corresponding values predicted

by the ANN model.

The validation of the network involved using the

vectors of a complete test, HCE2-CM6, which was not

included in the test set. In fact, HCE2-CM6 was felt to

be representative of all the tests conducted and of severe

accident conditions, as it involved heating a Zircaloy-

clad mini-element in argon/2%hydrogen and then steam

environments to 1500°C. The results of the validation

are depicted in Figs. 5 and 6. For this particular test, the

ANN model provides predictions having a good linear

correlation (r is 0.995), although it slightly underpredicts

in the steam portion of the test and overpredicts in the

Fig. 4. Scatter plot of 386 data point test set of 14-5-1 ANN

model.

Fig. 5. Scatter plots of models predicting cumulative fractional

release for validation set (HCE2-CM6). Statistical comparison

in Table 4. The lowest release value of the Lewis model corre-

sponds to the change from an argon to a steam environment.
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argon/hydrogen portion. As shown in Table 4, the En

value is 0.064, while Eabs is 0.054 over the whole test.

Returning to Fig. 4, moreover, it can be seen that across

the whole test set, some tests are underpredicted or

overpredicted, with the vast majority of vectors being

predicted very closely.

Fig. 6 shows the measured and predicted cumulative

fractional releases plotted against time that the sample is

above 1000°C. Two points are of note here. First, the

neural network model provides a smoothing of the data,

(the discontinuity at about 4000 s re¯ects the time at

which the environment changed from inert to steam).

The second point is that the model is able to reproduce

the non-linearity of the relationship between fractional

release and time, due to varying release rates. In this

particular test, though, the model values diverge

from the measured at less than 4000 s and beyond about

7500 s.

A sensitivity analysis and an examination of the

distribution of connection weights was conducted (the

most signi®cant inputs should have the highest con-

necting weights). The results can be seen in Table 5. The

fuel temperature was found to be the predominant in-

¯uence in predicting the cumulative fractional release of

134Cs, while time was second to temperature but more

important than all other factors. The weight of Zircaloy

followed time and presumably re¯ected the presence or

absence of a physical barrier (cladding) to the escape of

volatile ®ssion products and a chemical e�ect due to

hydrogen production from the steam/Zircaloy reaction.

This, in turn, results in a lower oxygen potential that will

retard the fuel oxidation (and hence di�usive release) [9].

Once the Zircaloy cladding is oxidized, early in the

steam tests, the volatile release kinetics will be similar to

those of the bare fuel fragments, (e.g., tests where the

Zircaloy weight equals zero in Table 1) since the Zirca-

loy cladding will no longer chemically in¯uence the re-

lease behaviour as a source of hydrogen. Thus, the

presence of Zircaloy acts to delay the release kinetics.

The hierarchy of the remaining in¯uences is felt to be

somewhat ambiguous, with these variables being second

order in¯uences, at best. The relatively minor role of

closed cladding may also suggest that the cladding on

the fuel samples was never really closed, as the end caps

were only held loosely by wires. This, plus evidence of

double sided oxidation [19] indicates that the cladding

may never have provided a signi®cant barrier to the

release of cesium. Another inference might be that the

fuel porosity, even at relatively high burnups, may not

have been su�cient to permit a complete release through

the interconnected pore network. Rather, the relative

importance of time suggests that much of the inventory

was intragranular, with di�usion to the grain boundary

Fig. 6. Comparison of model performance predicting cumula-

tive fractional release for validation set (HCE2-CM6). Statis-

tical comparison is in Table 4. The initial point of the Lewis

model corresponds to the change from argon to steam.

Table 5

Ranking of relative importance of input variables based on

sensitivity and weight space analyses

Variable

Temperature

Time sample above 1000°C

Time in air

Time at temperature

Time in steam

Zircaloy weight

Steam ¯ow rate

Cladding open

Fuel weight

Linear power

Burnup

Temperature change rate

Air ¯ow rate

Ar/H2 gas ¯ow rate

Table 4

Statistical attributes of models applied to validation set (HCE2-CM6). Models are depicted graphically in Figs. 5 and 6

Model Correlation coe�cient (r) Normalized error (En) Average absolute error Eabs

ANN 0.995 0.064 0.054

Lewis (steam) 0.992 0.056 0.038

CORSOR-M 0.979 1.523 0.270
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surface necessary before subsequent release through the

pore network. In addition, the relatively modest in¯u-

ence of the fuel weight (varying over two orders of

magnitude), and thus the surface-to-weight ratio, rein-

forces the signi®cance of the intragranular inventory.

In addition, there was relatively little range of values

in the linear power and burnup of the fuel samples. Not

surprisingly, then, these variables had relatively little

in¯uence on the cumulative fractional release of cesium

from the range of test samples.

Finally, the ANN CANDU model was compared to

CORSOR-M and to the Lewis ®ssion product release

model [9]. The results can be seen graphically in Figs. 5

and 6 applied to the same validation set used in the

ANN development, HCE2-CM6. The models are com-

pared statistically in Table 4. It can be seen that the

CORSOR-M model greatly underestimated the release

fraction. This may be attributable to the di�erent ex-

perimental conditions upon which CORSOR-M was

developed, i.e., higher temperatures and larger fuel

samples. The performance of the Lewis model is quite

good, although it must be borne in mind that the model

is ®xed at the experimentally measured release fraction

at the introduction of steam. In contrast, the ANN

model is a pure or blind prediction of the HCE2-CM6

measured releases in both Ar/H2 and steam environ-

ments. It should be noted, however, that the model de-

picted in Figs. 5 and 6 (having a 14-4-1 architecture) is

not the same as the one in Fig. 4 (having a 14-5-1 ar-

chitecture). In the latter case (Fig. 4), the model pro-

vided the best overall predictions across the whole set of

29 tests. The model shown in Figs. 5 and 6 provided a

better prediction for the speci®c validation set chosen,

HCE2-CM6, but was slightly less e�ective at predicting

over the test set representing the other 29 tests. Of the

two models, it is felt the one with the better general

behaviour (Fig. 4) is the more useful.

Based on the sensitivity analysis results, inputs were

pruned, beginning with the least signi®cant, and suc-

cessive models were trained. It was found that only after

the removal of the input variable used for the weight of

Zircaloy in the sample did signi®cant degradation in

convergences appear, with consequential poor predic-

tions of cumulative fractional release. Thus, an ANN

model containing the 6 inputs shown in Table 6 was able

to approximate the predictions of the full 14-input net-

work. An advantage inherent to the pruned model is

that it renders deployment easier, as a reduced number

of values for input variables is required. The perfor-

mance of this network is contained in Table 7.

The overall relative closeness of the ANN model

predictions to the values measured by CRL indicates

that a trained neural network model has been able to

establish a good correlation between a number of dis-

parate parameters representative of possible severe re-

actor accident conditions and the cumulative fractional

release of ®ssion product cesium.

Data for the LWR fuel model were taken from the

four VI tests (VI-2±VI-5) and divided into training and

test sets in a 3:1 ratio. No balancing of the input space

was conducted, as data were fairly evenly distributed

between steam (VI-2, VI-3) and hydrogen (VI-4, VI-5).

The isothermal temperatures were well above most of

those used for the CRL CANDU tests and the fuel

samples were much larger. A 5-3-1 network was found

to give good predictions, with the metrics contained in

Table 8. A scatter plot of the test set can be seen at

Fig. 7. As with the CANDU ANN model, the LWR

ANN model provided better predictions of the cumu-

lative fractional release of cesium under simulated

reactor accident conditions than did CORSOR-M or

semi-empirical di�usion-based models [20].

5. Ann model deployment

The ANN models were developed from an input

space of 14 variables, as shown in Table 2 for CANDU

fuel and 5 variables for LWR fuel, as shown in Table 3.

In order to use a trained model to predict the cumulative

fractional release of cesium under conditions within the

range of input values, the appropriate variable values

must be scaled according to Eq. (1). The appropriate

maximum and minimum values are contained in Ta-

bles 2 and 3. The connection weights for the 14-5-1 (bias

Table 6

Input variables used in a pruned (6-4-1) ANN model for

CANDU fuel based on data from 29 CRL tests

Variables

Time sample above 1000°C (s)

Fuel sample temperature (°C)

Time sample at a given temperature (s)

Time sample in steam (s)

Time sample in air (s)

Weight of Zircaloy (g)

Table 7

Statistical attributes of pruned (6-4-1) ANN model for CANDU fuel applied to validation set (HCE2-CM6)

Correlation coe�cient (R) Normalized error (En) Average absolute error Eabs

Test set 0.883 0.226 0.096

Validation set 0.971 0.214 0.095
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node 0, input nodes 1-14, hidden nodes 15-19 and out-

put node 20) CANDU network shown in Fig. 4 are

contained in Table 9. The corresponding maximum and

minimum values for LWR fuel for a 5-3-1 network are in

Table 2, with the hidden nodes being 7±9 and the output

10. The connection weights are in Table 10. The output

values from each input node must then be multiplied by

the appropriate connection weight and summed at each

hidden node (Eq. (2)). A hyperbolic tangent transfer

function is then applied at each hidden node to deter-

mine the appropriate output (Eq. (3)). This process is

repeated at the output node (Eqs. (4) and (5)). The

output from the output node must then be scaled back

to a real world value, according to Eq. (6), with the

respective values of M and m being 0.9925 and ÿ0.117

for the CANDU network and 1.0023 and 0 for LWR.

This series of operations can easily be performed by a

spreadsheet calculation or written into a short code in a

programming language, e.g., Basic. The series of simple

calculations allows the computations to be performed in

real time.

As with any correlation, as distinct from physically-

based models, ANNs can only be used with con®dence

within the range of the input space on which they were

developed. For the models discussed above, the indi-

vidual variable ranges are given in Tables 2 and 3.

Consideration of cases outside these ranges represents

Fig. 7. Scatter plot of test set for ORNL VI data.

Table 8

Statistical attributes of ANN model for LWR fuel applied to data from ORNL tests VI-2 to VI-5

Correlation coe�cient (R) Normalized error (En) Average absolute error (Eabs)

Test set 0.985 0.045 0.059

Table 9

Connection weights wji and wkj for a 14-5-1 trained ANN

Source node Destination node

15 16 17 18 19 20

0 ÿ0.4305 0.2578 0.0018 0.0606 ÿ0.1546 0.4668

1 ÿ1.5001 0.8345 ÿ0.6655 ÿ1.2945 ÿ0.1987

2 0.0521 ÿ2.0045 ÿ1.0748 ÿ2.2791 ÿ0.9801

3 ÿ0.2716 ÿ0.5367 ÿ0.0451 0.2944 0.0935 8

4 ÿ0.5602 ÿ0.6749 ÿ0.2416 ÿ1.9599 ÿ0.0978

5 ÿ1.8507 0.1387 ÿ0.4572 ÿ0.0618 ÿ0.0943

6 1.1470 ÿ0.4846 1.1114 2.5243 0.5328

7 1.2937 ÿ0.4971 0.1895 0.7858 0.2406

8 ÿ0.6041 0.4703 ÿ0.0633 ÿ0.4438 0.3048

9 ÿ0.3888 0.4718 ÿ0.1081 ÿ0.7703 ÿ0.0689

10 ÿ0.8062 ÿ0.0842 0.1111 0.4438 ÿ0.1239

11 0.6468 ÿ0.1865 ÿ0.0033 0.2545 ÿ0.0193

12 ÿ0.9383 ÿ0.8495 ÿ0.6413 ÿ0.5259 ÿ0.1234

13 0.8866 1.0589 0.5407 1.1923 0.3248

14 0.4028 ÿ0.2117 ÿ0.1219 ÿ0.2636 ÿ0.0983

15 ÿ0.5391

16 ÿ0.4932

17 ÿ0.0579

18 ÿ0.3824

19 0.2102
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extrapolation, which is of questionable validity and thus

strongly discouraged.

The models do, however, re¯ect a general correlation

among 14 input variables developed from data collected

during 30 separate and distinct tests. This represents the

®rst comprehensive model involving data from all these

tests.

6. Conclusions

Back propagation neural network models with

modi®ed delta learning rules have been trained to pre-

dict the cumulative fractional release of the volatile ®s-

sion product cesium from CANDU fuel fragments and

mini-elements, as well as LWR elements, under a variety

of simulated severe accident conditions within the range

of the experimental data on which they were trained.

The models were able to reproduce the non-linearities

inherent in the relationships between fractional release

and time, and provided a smoothing of the data. Finally,

the CANDU model was able to predict the general trend

of the release kinetics for a validation set which was not

used for training, and to predict the cumulative frac-

tional release to within an average absolute error of

0.054.
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Appendix A. Error minimization in back propagation

networks

To e�ect training, the network is not only presented

with a full array of inputs, but also with known (mea-

sured) outputs, for each input set or vector. When the

initial pass through the network for a given set of data is

complete, a set of outputs, zk , is determined. These

values are then compared to dk , the value corresponding

to the desired outputs, but mapped into the same range

as zk , to arrive at a global error E, where

E � 1

2

X
k

�dk ÿ zk�2: �A:1�

This form for the global error, rather than what might

appear to be a more logical
P�dk ÿ zk�, has two ad-

vantages, it removes the sign of the di�erence (thus

preventing two di�erences from cancelling each other)

and the ®rst derivative becomes the basic di�erence as

shown below.

oE
ozk
� ÿ�dk ÿ zk�: �A:2�

The global error is then propagated backwards through

the network to adjust the individual connecting weights

and the process of determining zk is repeated using the

same input vector x, (i.e., x1; x2; x3; . . . xi, . . . xn�. This

back and forth iterative process is continued until the

global error is minimized. At this point, another set of

input data (vector) is introduced into the network and

the process is continued. Generally, the connecting

weights are adjusted after an `epoch', which can be a

multiple of the complete training set, where the training

set is the set of training vectors, although the epoch does

not normally exceed 500 vectors. This adjustment in-

volves the average adjustment to each weight during the

epoch, so the weight adjustments must be stored during

each epoch.

Basic back propagation networks use the `delta' rule

during training, which implements a gradient descent in

E into the weight space (wji and wkj for all i; j and k). The

Table 10

Connection weights wji and wkj for a 5-3-1 trained ANN for LWR fuel

Source node Destination node

7 8 9 10

0 ÿ1.4640 0.9716 1.8189 ÿ1.0947

1 ÿ0.6076 1.2991 0.7445

2 ÿ2.7166 0.9193 0.9614

3 0.9719 0.5590 ÿ1.7007

4 ÿ1.1473 ÿ2.0448 ÿ2.7551

5 1.7188 ÿ0.1419 ÿ0.5720

6 ÿ1.2394

7 0.5573

8 0.7505

84 W.S. Andrews et al. / Journal of Nuclear Materials 270 (1999) 74±86



delta rule can be used if the network has `semi-linear'

activation or transfer functions which are di�erentiable

and non-decreasing. Linear threshold functions are not

satisfactory, as their derivatives are in®nite at the

threshold and zero elsewhere. For the delta rule, the

following relationship is used:

Dwkj / ÿ oE
owkj

; �A:3�

where Dwkj is the change made to the connecting weight

between the kth output node and the jth hidden node. It

is useful to apply the chain rule to the partial derivative

above, so that

oE
owkj

� oE
oIk
� oIk

owkj
: �A:4�

This product on the right-hand-side re¯ects, in the ®rst

term, the change in the global error as a function of the

change in the net input to a particular node or neuron.

The second term re¯ects the e�ect on the net input of

changing a particular connecting weight. The second

term, then, is

oIk

owkj
� o

owkj

X
j

wkjyj � yj: �A:5�

The term d, or delta, which provides the name of the

rule, and which is sometimes called the local error e, is

de®ned as

dk � ÿ oE
oIk

: �A:6�

Using this, Eq. (A.4) can be rewritten as

ÿ oE
owkj

� dkyj: �A:7�

Thus, from Eq. (A.3), changes to weights between out-

put and hidden nodes can be determined from

Dwkj � gdkyj; �A:8�
where g is a proportionality constant and is often called

the learning coe�cient. It can be seen from Eq. (A.8)

that the term dk or ek is essential for determining the

appropriate weight adjustment. To determine dk itself,

the chain rule is applied to Eq. (A.6),

dk � ÿ oE
ozk
� ozk

oIk
: �A:9�

The second term on the right-hand side is the derivative

of the hyperbolic tangent transfer function, shown in

Eqs. (3) and (5), such that

ozk

oIk
� �1� zk��1ÿ zk�: �A:10�

The ®rst term of Eq. (A.9) is already expanded in

Eq. (A.2). Consequently, for the output layer,

dk � �dk ÿ zk��1� zk��1ÿ zk�: �A:11�
The d is slightly di�erent when entering a hidden

node, however, as the error from the output is propa-

gated backwards. Thus

Dwji � ÿg
oE
owji

; �A:12�

which can be expanded by the chain rule

Dwji � ÿg
oE
ozk

ozk

oIk

oIk

oyj

oyj

oIj

oIj

owji
: �A:13�

The ®rst partial derivative is already addressed in

Eq. (A.2), the second in Eq. (A.10) and the fourth in

Eq. (3). The third partial derivative is expanded by

oIk

oyj
� o

oyj

X
j

wkjyj �
X

j

wkj: �A:14�

Finally, the expansion of the ®fth partial derivative is

analogous to Eq. (A.5)

oIj

owji
� o

owji

X
i

wjixi � xi: �A:15�

Thus

Dwji � g�dk ÿ zk��1� zk��1ÿ zk�
X

j

wkj�1� yj��1ÿ yj�xi:

�A:16�

Substituting dk from Eq. (A.11) into Eq. (A.16) gives

Dwji � g
X

j

dkwkj�1� yj��1ÿ yj�xi: �A:17�

The local delta or error for the hidden layer is, then,

dj � ÿ oE
oIj
� ÿ oE

ozk

ozk

oIk

oIk

oyj

oyj

oIj
: �A:18�

The partial derivatives are the same as the ®rst four

derivatives in Eq. (A.13). The full expansion of this

equation, then, is

dj � �dk ÿ zk��1� zk��1ÿ zk�
X

j

wkj�1� yj��1ÿ yj�

�A:19�
which can be simpli®ed to

dj � �1� yj��1ÿ yj�
X

j

dkwkj: �A:20�

Eq. (A.20) can be substituted back into Eq. (A.17) to

give a simpler expression of the adjustments to be made

to the weights between the input and hidden layers as a

result of supervised learning

Dwji � gdjxi: �A:21�

Thus, the weights between the input and hidden layers

are adjusted by
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�wji�new � �wji�old � Dwji: �A:22�

In the extended delta-bar-delta paradigm, the weight

adjustment term, Dwji, is modi®ed to include a portion

(a, the momentum coe�cient, where a < 1) of the pre-

vious weight adjustment �Dwji�old, so that

�Dwji�new � gdjxi � a�Dwji�old: �A:23�
It is worth reiterating that in the models developed

for this paper, there is only one output node, so k � 1

for all the derivations above. Also, it can be seen from

the equations for the hidden layer weight adjustments

(Eqs. (A.17) and (A.21)) how the error at the output

layer, dk , is propagated backwards through the network

and is incorporated in the weight adjustments between

the input and hidden layers [10,11].
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